The variance of the number obtained in a throw of an unbiased die is : |
$\frac{91}{6}$ $\frac{35}{12}$ $\frac{4}{3}$ $\frac{21}{6}$ |
$\frac{35}{12}$ |
The correct answer is Option (2) → $\frac{35}{12}$ The possible outcomes when rolling an unbiased die 1, 2, 3, 4, 5, 6. Mean, $μ=E(X)=∑XP(X)$ $=\left(1×\frac{1}{6}+2×\frac{1}{6}+3×\frac{1}{6}+4×\frac{1}{6}+5×\frac{1}{6}+6×\frac{1}{6}\right)=\frac{21}{6}$ Variance, $σ=E(X^2)-[E(X)]^2$ $[E(X)]^2=\left(1^2×\frac{1}{6}+2^2×\frac{1}{6}+3^2×\frac{1}{6}+4^2×\frac{1}{6}+5^2×\frac{1}{6}+6^2×\frac{1}{6}\right)=\frac{91}{6}$ $σ^2=\frac{91}{6}-(\frac{21}{6})^2=\frac{35}{12}$ |