$\int\limits^{2}_{0}|x-1|dx=$ |
1 2 3 $\frac{3}{2}$ |
1 |
The correct answer is Option (1) → 1 $\int\limits^{2}_{0}|x-1|dx$ $|x-1|\left\{\begin{matrix}1-x,&x<1\\x-1,&x≥1\end{matrix}\right.$ $=\int\limits^{2}_{0}1-xdx+\int\limits^{2}_{1}x-1dx$ $=\left[x-\frac{x^2}{2}\right]_0^1+\left[\frac{x^2}{2}-x\right]^{2}_{1}$ $=1-\frac{1}{2}+\frac{4}{2}-2+1-\frac{1}{2}$ $=2-1+2-2=1$ sq. unit |