For the curve $y(1+x^2)=2-x$, if $\frac{dy}{dx}=\frac{1}{A}$ at the point where the curve crosses the x-axis, then the value of A is: |
5 -5 -1 0 |
-5 |
The correct answer is Option (2) → -5 $y(1+x^2)=2-x$ $\frac{d}{dx}[y(1+x^2)]=\frac{d}{dx}(2-x)$ $y\frac{d}{dx}(1+x^2)+(1+x^2)\frac{dy}{dx}=-1$ $y(2x)+(1+x^2)\frac{dy}{dx}=-1$ $(1+x^2)\frac{dy}{dx}=-1-2xy$ $\frac{dy}{dx}=\frac{-1-2xy}{1+x}$ At the x-axis, $y=0$ ∴ Substituting in $y.(1+x^2)=2-x$ $0(1+x^2)=2-x$ $⇒x=2$ ∴ Curve crosses x-axis at (2, 0) Finding $\frac{dy}{dx}$ at (2, 0) $⇒\frac{dy}{dx}=\frac{-1-2(2)(0)}{1+2^2}=-\frac{1}{5}$ $⇒\frac{dy}{dx}=\frac{1}{A}$ $⇒A=-5$ |