Target Exam

CUET

Subject

Physics

Chapter

Moving Charges and Magnetism

Question:

A magnetic needle lying parallel to a magnetic field requires W units of work to turn it through 60°. The torque needed to maintain the needle in its position, will be:

Options:

$\sqrt{3} W$

$W$

$\sqrt{3} W/2$

$2 W$

Correct Answer:

$\sqrt{3} W$

Explanation:

The correct answer is Option (1) → $\sqrt{3} W$

Total work done (W) to rotate the needle from 0° → 60°

[θ → angle between needle and magnetic field]

[B → Magnetic field]

[m → magnetic moment]

$W=\int\limits_{0°}^{60°}mB\sin θdθ$

$=mB\left[-\cos θ\right]_{0°}^{60°}$

$=mB\left(-\frac{1}{2}+1\right)=\frac{mB}{2}$

and,

To maintain the needle in a fixed position at any angle θ.

$z=mB\sin θ=mB\sin 60°$

$=mB=\frac{\sqrt{3}}{2}$

$=2W\frac{\sqrt{3}}{2}=W\sqrt{3}$