The matrix $X$ in the equation $AX = B$, such that $A = \begin{bmatrix}1&3\\0&2\end{bmatrix}$ and $B = \begin{bmatrix}1&-1\\0&2\end{bmatrix}$ is given by |
$\frac{1}{2}\begin{bmatrix}2&-8\\0&2\end{bmatrix}$ $\frac{1}{2}\begin{bmatrix}2&-6\\0&1\end{bmatrix}$ $\frac{1}{2}\begin{bmatrix}2&-8\\0&1\end{bmatrix}$ $\frac{1}{2}\begin{bmatrix}1&-8\\0&1\end{bmatrix}$ |
$\frac{1}{2}\begin{bmatrix}2&-8\\0&2\end{bmatrix}$ |
The correct answer is Option (1) → $\frac{1}{2}\begin{bmatrix}2&-8\\0&2\end{bmatrix}$ The matrix equation is: $AX = B$ where $A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$. Since $X = A^{-1} B$, first find the inverse of $A$: $A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ $= \frac{1}{(1)(2) - (3)(0)} \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{3}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$ Now, compute $X$: $X = A^{-1} B = \begin{bmatrix} 1 & -\frac{3}{2} \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$ $= \begin{bmatrix} 1 \times 1 + \left(-\frac{3}{2}\right) \times 0 & 1 \times (-1) + \left(-\frac{3}{2}\right) \times 2 \\ 0 \times 1 + \frac{1}{2} \times 0 & 0 \times (-1) + \frac{1}{2} \times 2 \end{bmatrix}$ $= \begin{bmatrix} 1 & -1 - 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix}$ |