Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Indefinite Integration

Question:

I= $∫a^{5x+3}dx$ is:

Options:

$a^{5x+3}+C$, where C is a constant

$\frac{a^{5x+3}}{5\, log_ea}+C,$ where C is a constant

$\frac{a^{5x+3}}{5}+C,$ where C is a constant

$\frac{a^{5x+3}}{log_ea}+C,$ where C is a constant

Correct Answer:

$\frac{a^{5x+3}}{5\, log_ea}+C,$ where C is a constant

Explanation:

The correct answer is Option (2) → $\frac{a^{5x+3}}{5\, log_ea}+C,$ where C is a constant

$I=∫a^{5x+3}dx$

let $5x+3=y$

$dy=5dx$

$I==\int\frac{a^y}{5}dy=\frac{a^y}{5\log a}+C$

$=\frac{a^{5x+3}}{5\log a}+C$