I= $∫a^{5x+3}dx$ is: |
$a^{5x+3}+C$, where C is a constant $\frac{a^{5x+3}}{5\, log_ea}+C,$ where C is a constant $\frac{a^{5x+3}}{5}+C,$ where C is a constant $\frac{a^{5x+3}}{log_ea}+C,$ where C is a constant |
$\frac{a^{5x+3}}{5\, log_ea}+C,$ where C is a constant |
The correct answer is Option (2) → $\frac{a^{5x+3}}{5\, log_ea}+C,$ where C is a constant $I=∫a^{5x+3}dx$ let $5x+3=y$ $dy=5dx$ $I==\int\frac{a^y}{5}dy=\frac{a^y}{5\log a}+C$ $=\frac{a^{5x+3}}{5\log a}+C$ |