Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

$\int\limits_0^{\frac{\pi}{2}} \sin ^2 x d x$ is equal to:

Options:

$\frac{\pi}{4}$

$\frac{\pi}{2}$

$\frac{\pi}{3}$

$\pi$

Correct Answer:

$\frac{\pi}{4}$

Explanation:

The correct answer is Option (1) → $\frac{\pi}{4}$

$\int\limits_0^{\frac{\pi}{2}} \sin ^2 x d x=\int\limits_0^{\frac{\pi}{2}}\frac{1}{2}-\frac{\cos 2x}{2}dx$

$=\left[\frac{x}{2}-\frac{\sin 2x}{4}\right]_0^{\frac{\pi}{2}}=\frac{\pi}{4}$