The limiting molar conductivities \(\Lambda ^o\) for NaCl, KBr and KCl are 126, 152 and 150 S cm2 mol–1 respectively. The \(\Lambda ^o\) for NaBr (S cm2 mol–1) is |
302 176 278 128 |
128 |
Given, the molar conductivities are \(\Lambda^o_{NaCl} = 126 Scm^2mol^{-1}\) \(\Lambda^o_{KBr} = 152 Scm^2mol^{-1}\) \(\Lambda^o_{KCl} = 150 Scm^2mol^{-1}\) According to Kohlrausch's law, we can write \(\Lambda^o_{NaCl} = \Lambda ^o_{Na^+} + \Lambda ^o_{Cl^-}\) --------(1) \(\Lambda^o_{KBr} = \Lambda ^o_{K^+} + \Lambda ^o_{Br^-}\) --------(2) \(\Lambda^o_{KCl} = \Lambda ^o_{K^+} + \Lambda ^o_{Cl^-}\) --------(3) \(\Lambda^o_{NaBr} = \Lambda ^o_{Na^+} + \Lambda ^o_{Br^-}\) --------(4) Equation (1) + (2) - (3), we get \(\Lambda^o_{NaCl} + \Lambda^o_{KBr} − \Lambda^o_{NaBr} = \Lambda ^o_{Na^+} + \Lambda ^o_{Cl^-} + \Lambda ^o_{K^+} + \Lambda ^o_{Br^-} − \Lambda ^o_{K^+} − \Lambda ^o_{Cl^-}\) ⇒ \(126 + 152 − 150 = \Lambda ^o_{Na^+} + \Lambda ^o_{Br^-}\) ⇒\(\Lambda^o_{NaBr} = 128 Scm^2mol^{-1}\) |