What uniform magnetic field applied perpendicular to a beam of electrons moving at $1.3 \times 10^6 m/s$, is required to make the electrons travel in a circular arc of radius 0.35 m? |
$2.1 \times 10^{-5} G$ $6 \times 10^{-5} T$ $2.1 \times 10^{-5} T$ $6 \times 10^{-5} G$ |
$2.1 \times 10^{-5} T$ |
The correct answer is Option (3) → $2.1 \times 10^{-5} T$ The magnetic force is given by - $F_{magnetic}=evB$ $F_{centripetal}=\frac{mv^2}{r}$ and, $F_{magnetic}=F_{centripetal}$ $evB=\frac{mv^2}{r}$ $⇒B=\frac{mv}{er}=\frac{(9.1×10^{-31})(1.3×10^6)}{(1.6×10^{-19})(0.35)}$ $≃2.1 \times 10^{-5} T$ |