Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Determinants

Question:

If $x, y$ and $z$ are non-zero distinct numbers, then $\begin{vmatrix}x+y&y+z&z+x\\z&x&y\\1&1&1\end{vmatrix}$ is equal to

Options:

$x+y+z$

$2(x+y+z)$

1

0

Correct Answer:

0

Explanation:

The correct answer is Option (2) → 0

$D = \begin{vmatrix} x + y & y + z & z + x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix}$

Apply column operation: C₁ → C₁ + C₂ + C₃

$D = \begin{vmatrix} (x + y) + (y + z) + (z + x) & y + z & z + x \\ z + x + y & x & y \\ 3 & 1 & 1 \end{vmatrix}$

$= \begin{vmatrix} 2(x + y + z) & y + z & z + x \\ x + y + z & x & y \\ 3 & 1 & 1 \end{vmatrix}$

Now expand along column 1:

$D = 2(x + y + z) \cdot \begin{vmatrix} x & y \\ 1 & 1 \end{vmatrix} - (x + y + z) \cdot \begin{vmatrix} y + z & z + x \\ 1 & 1 \end{vmatrix} + 3 \cdot \begin{vmatrix} y + z & z + x \\ x & y \end{vmatrix}$

$= 2(x + y + z)(x - y) - (x + y + z)[(y + z)(1) - (z + x)(1)] + 3[(y + z)(y) - (z + x)(x)]$

$= 2(x + y + z)(x - y) - (x + y + z)(y + z - z - x) + 3(y^2 + y z - x z - x^2)$

$= 2(x + y + z)(x - y) - (x + y + z)(y - x) + 3(y^2 - x^2 + yz - xz)$

$= 2(x + y + z)(x - y) + (x + y + z)(x - y) + 3(y^2 - x^2 + yz - xz)$

$= 3(x + y + z)(x - y) + 3(y^2 - x^2 + yz - xz)$

$= 3[(x + y + z)(x - y) + y^2 - x^2 + yz - xz]$

$= 3[x(x - y) + y(x - y) + z(x - y) + y^2 - x^2 + yz - xz]$

$= 3[x^2 - x y + x y - y^2 + x z - y z + y^2 - x^2 + y z - x z]$

$= 3[0]$

$= 0$