In ΔABC, ∠A = 66°, BD ⊥ AC and CE ⊥ AB. BD and EC intersect at P. The bisectors ∠PBC and ∠PCB meet at Q. What is the measure of ∠BQC ? |
127° 132° 143° 147° |
147° |
In the quadrilateral AEPD ∠EAD + ∠PEA + ∠EPD + ∠PDA = \({360}^\circ\) ⇒ ∠EPD = \({360}^\circ\) - (\({66}^\circ\) + \({90}^\circ\) + \({90}^\circ\)) ⇒ ∠EPD = \({114}^\circ\) From figure ∠EPD = \({114}^\circ\) = ∠BPC ∠BQC = \({90}^\circ\) + \(\frac{∠BPC}{2}\) ∠BQC = \({90}^\circ\) + \(\frac{114}{2}\) = \({90}^\circ\) + \({57}^\circ\) = \({147}^\circ\) (since ∠EPD and ∠BPC are vertically opposite angles ). Therefore, ∠BQC is \({147}^\circ\) |