The area enclosed by the curve \(x=a\cos t,y=a\sin t, t\in [0,2\pi]\) is |
\(2a\pi\) \(\frac{\pi}{2}a^{2}\) \(\pi a\) \(\frac{\pi}{4}a^{2}\) |
\(\pi a\) |
\(\begin{aligned}\text{Area}&=\frac{1}{2}\int_{0}^{2\pi}\left(x\frac{dy}{dt}-y\frac{dx}{dt}\right)dt\\ &=\pi a\end{aligned}\) |