What is the constant term in the expansion of $\left(5 x^2-\frac{1}{x}\right)^3$ ? |
15 5 75 -15 |
15 |
(a - b)3 = a3 - b3 - 3ab(a-b) $\left(5 x^2-\frac{1}{x}\right)^3$ = (5x2)3 - \(\frac{1}{x^3}\) - 3 × 5x × \(\frac{1}{x}\)($\left(5 x^2-\frac{1}{x}\right)$ $\left(5 x^2-\frac{1}{x}\right)^3$ = 125x6 – \(\frac{1}{x^3}\) – 75x3 + 15 So the constant term will be = 15 |