If f(4) = 4, f'(4) = 1, then $\lim\limits_{x \rightarrow 4} \frac{2-\sqrt{f(x)}}{2-\sqrt{x}}$ is equal to |
-1 1 2 -2 |
1 |
We have, $\lim\limits_{x \rightarrow 4} \frac{2-\sqrt{f(x)}}{2-\sqrt{x}}$ $=\lim\limits_{x \rightarrow 4} \frac{4-f(x)}{4-x} \times \frac{2+\sqrt{x}}{2+\sqrt{f(x)}}$ $=\lim\limits_{x \rightarrow 4} \frac{f(x)-4}{x-4} \times \lim\limits_{x \rightarrow 4} \frac{2+\sqrt{x}}{2+\sqrt{f(x)}}$ $=f'(4) \times \frac{2+2}{2+\sqrt{f(4)}}$ $\left[\begin{array}{c}∵ f(x) \text { is differentiable at } x=4 \\ ∴ \text { It is continuous at } x = 4 . \\ \text { Hence, } \lim\limits_{x \rightarrow 4} f(x)=f(4)\end{array}\right]$ $=1 \times \frac{4}{2+2}=1$ |