Two ropes are tied along the two diagonals of a cubic room. Ropes are inclined to each other at : |
$45^{\circ}$ $30^{\circ}$ $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ $\cos ^{-1}\left(\frac{1}{3}\right)$ |
$\cos ^{-1}\left(\frac{1}{3}\right)$ |
Let us imagine a cube of unit distances → one diagonal is along HE → H(0, 0, 0) E(1, 1, 1) one along ac → a(0, 1, 1) to c(1, 0, 0) So $\vec{HE} = \hat{i} + \hat{j} + \hat{k} = \vec{v_1}$ $\vec{ac} = \hat{i} - \hat{j} - \hat{k} = \vec{v_2}$ angle between ropes → $\vec{v_1} . \vec{v_2} = |\vec{v_1}| |\vec{v_2}| \cos \theta$ ⇒ $|1 - 1 - 1| = \sqrt{3} \sqrt{3} \cos \theta$ $\cos \theta = \frac{1}{3} \Rightarrow \theta = \cos ^{-1}\left(\frac{1}{3}\right)$ |