The value of $\int\limits_{-1}^1 \frac{d}{d x}\left(\tan ^{-1} \frac{1}{x}\right) d x$, is |
$\pi / 2$ $-\pi / 4$ $-\pi / 2$ none of these |
$-\pi / 2$ |
We have, $\frac{d}{d x}\left(\tan ^{-1} \frac{1}{x}\right)=\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^2}$ ∴ $\int\limits_{-1}^1 \frac{d}{d x}\left(\tan ^{-1} \frac{1}{x}\right) d x=\int\limits_{-1}^1-\frac{1}{1+x^2} d x=-2 \int\limits_0^1 \frac{1}{1+x^2} d x$ $\Rightarrow \int\limits_{-1}^1 \frac{d}{d x}\left(\tan ^{-1} \frac{1}{x}\right) d x=-2\left[\tan ^{-1} x\right]_0^1=-2\left(\frac{\pi}{4}\right)=-\frac{\pi}{2}$ |