If A and B are two events such that $P(A)=\frac{1}{2}$ and $P(B)=\frac{2}{3}$, then wjich of the following is incorrect ? |
$P(A ∪ B) ≥ \frac{2}{3}$ $P(A ∩ \overline{B}) ≥ \frac{1}{3}$ $\frac{1}{6} ≤ P(A ∩ B) ≤\frac{1}{2}$ $\frac{1}{6} ≤ P(\overline{A} ∩ B) ≤\frac{1}{2}$ |
$P(A ∩ \overline{B}) ≥ \frac{1}{3}$ |
We have, $P(A ∩ B) ≥ $ max $\begin{Bmatrix}P(A), P(B)\end{Bmatrix}=2/3$ and, $P(A ∩ B) ≤$ min $ \begin{Bmatrix}P(A), P(B)\end{Bmatrix}=1/2$ So option (a) is correct. Now, $ P(A ∩ B) = P(A) + P(B) - P(A ∪ B)$ $⇒ P(A ∩ B)≥ P(A) +P(B) -1 =\frac{1}{6}$ $∴ \frac{1}{6}≤ P(A ∩ B)≤\frac{1}{2}$ So, option (c) is correct. Now, $\frac{1}{6}≤ P(A ∩ B)≤\frac{1}{2}$ $⇒ -\frac{1}{2} ≤ -(P ∩ B) ≤ -\frac{1}{6}$ $⇒ \frac{2}{3}-\frac{1}{2}≤ P(B) -P(A ∩ B) ≤ \frac{2}{3} -\frac{1}{6}⇒\frac{1}{6}≤ P(\overline{A} ∩ B) ≤ \frac{1}{2}$ So, option (d) is correct. Now, $P(A ∩ \overline{B})= P(A) - p(A ∩ B)$ $⇒ P(A ∩ \overline{B} ) ≤ \frac{1}{2}-\frac{1}{6}=\frac{1}{3}$ so, option (d) is correct. |