The value of $\underset{x→α}{\lim}\frac{1-\cos(ax^2+bx+c)}{(x-α)^2}$, where $α$ and $β$ are the roots of $ax^2+bx+c=0$, is |
$(a-b)^2$ $\frac{(α-β)^2}{2}$ $\frac{1}{2}a^2(α-β)^2$ none of these |
$\frac{1}{2}a^2(α-β)^2$ |
$\underset{x→α}{\lim}\frac{1-\cos(ax^2+bx+c)}{(x-α)^2}$ $(\frac{0}{0}form)$ $=\underset{x→α}{\lim}\frac{(2ax+b)\sin(ax^2+bx+c)}{2(x-α)}=\underset{x→α}{\lim}\frac{(2ax+b)\sin[a(x-α)(x-β)]}{2(x-α)}$ $=\underset{x→α}{\lim}\frac{(2ax+b)\sin[a(x-α)(x-β)]}{2a(x-α)(x-β)}a(x-β)$ $=\frac{a^2}{2}\left(2α+\frac{b}{a}\right)(α-β)=\frac{a^2}{2}(2α-α-β)(α-β)=\frac{a^2(α-β)^2}{2}$ |