The average drift speed of conduction electrons in a copper wire of cross-sectional area $1.0 \times 10^{-7} m^2$ carrying a current of 1.5 A. (Assume the density of conduction electrons to be $\left.9 \times 10^{28} / m^3\right)$ |
$2.08 \times 10^{-4} m / s$ $1.04 \times 10^{-3} m / s$ $6.96 \times 10^{-3} m / s$ $2.9 \times 10^{-4} m / s$ |
$1.04 \times 10^{-3} m / s$ |
The correct answer is Option (2) → $1.04 \times 10^{-3} m / s$ To calculate the average drift speed ($v_d$) of conduction electrons - $I=neAv_d$ where, I (current) = 1.5 A $n$ (number of density per nucleons) = $9×10^{28}m^{-3}$ $v_d=\frac{I}{nAe}=\frac{1.5}{(9×10^{28})(1×10^{-7})(1.6×10^{-19})}$ $≃1.04×10^{-3}m/s$ |