Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

If $f:\left[\frac{π}{2},\frac{3π}{2}\right]→[-1,1]$ is defined by $f(x)=\sin x$,  then $f^{-1}(x)$ is given by

Options:

$\sin^{-1}x$

$π+\sin^{-1}x$

$π-\sin^{-1}x$

none of these

Correct Answer:

$π-\sin^{-1}x$

Explanation:

Obviously f is one-one and onto, thus $f^{-1}$ exists.

Since $-\frac{π}{2}≤\sin^{-1}x≤\frac{π}{2},\frac{π}{2}≤π-\sin^{-1}x≤\frac{3π}{2}$