If $f(x)=\frac{2}{3} a^2 x^3-\frac{5 a}{2} x^2+3 x+b$, then the set of values of b for which local extrema of the function f(x) are positive and maximum occurs at $x=\frac{1}{3}$, is |
$(-4, \infty)$ $(-3 / 8, \infty)$ $(-10,3 / 8)$ none of these |
$(-3 / 8, \infty)$ |
We have, $f(x) =\frac{2}{3} a^2 x^3-\frac{5 a}{2} x^2+3 x+b$ .........(i) $\Rightarrow f'(x) =2 a^2 x^2-5 a x+3$ and $f''(x)=4 a^2 x-5 a$ It is given that f(x) attains maximum at $x=1 / 3$. Therefore, $f'\left(\frac{1}{3}\right)=0$ and $f''\left(\frac{1}{3}\right)<0$ $\Rightarrow \frac{2 a^2}{9}-\frac{5 a}{3}+3=0$ and $\frac{4 a^2}{3}-5 a<0$ $\Rightarrow 2 a^2-15 a+27=0$ and $4 a^2-15 a<0 $ $\Rightarrow (2 a-9)(a-3)=0$ and $a(4 a-15)<0$ $\Rightarrow a=3, \frac{9}{2}$ and $0<a<\frac{15}{4} \Rightarrow a=3$ ∴ $f'(x)=18 x^2-15 x+3$ and $f''(x)=36 x-15$ At extreme points, we have $f'(x)=0 \Rightarrow 6 x^2-5 x+1=0 \Rightarrow x=\frac{1}{2}, \frac{1}{3}$ Clearly, $f''\left(\frac{1}{2}\right)>0$ and $f''\left(\frac{1}{3}\right)<0$ So, $x=\frac{1}{2}$ is the point of local minimum and $x=\frac{1}{3}$ is the point of local maximum. Putting a = 3 in (i), we get $f(x)=6 x^3-\frac{15}{2} x^2+3 x+b$ The extreme values of f(x) are $f\left(\frac{1}{2}\right)=\frac{6}{8}-\frac{15}{8}+\frac{3}{2}+b=\frac{3}{8}+b$ and, $f\left(\frac{1}{3}\right)=\frac{6}{27}-\frac{15}{18}+1+b=\frac{7}{18}+b$ For these extreme values to be positive, we must have $\frac{3}{8}+b>0$ and $\frac{7}{18}+b>0$ $\Rightarrow b>-\frac{3}{8}$ and $b>-\frac{7}{18} \Rightarrow b>-\frac{3}{8} \Rightarrow b \in\left(-\frac{3}{8}, \infty\right)$ |