Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Differential Equations

Question:
The solution of the equation \(\frac{dy}{dx}=3^{y-x}\) is
Options:
\(3^{x}-3^{y}=c\)
\(\frac{1}{3^{x}}+\frac{1}{3^{y}}=c\)
\(3x+3y=c\)
\(\frac{1}{3^{x}}-\frac{1}{3^{y}}=x\)
Correct Answer:
\(\frac{1}{3^{x}}-\frac{1}{3^{y}}=x\)
Explanation:
\(\begin{aligned}\int 3^{-y}dy&=\int 3^{-x}dx\\ \frac{-3^{y}}{\log_{e}3}&=\frac{-3^{-x}}{\log_{e}3}+\frac{c}{\log_{e}3}\\ \frac{1}{3^{x}}-\frac{1}{3^{y}}&=c\end{aligned}\)