The solution of the equation \(\frac{dy}{dx}=3^{y-x}\) is |
\(3^{x}-3^{y}=c\) \(\frac{1}{3^{x}}+\frac{1}{3^{y}}=c\) \(3x+3y=c\) \(\frac{1}{3^{x}}-\frac{1}{3^{y}}=c\) |
\(\frac{1}{3^{x}}-\frac{1}{3^{y}}=c\) |
The correct answer is Option (4) → \(\frac{1}{3^{x}}-\frac{1}{3^{y}}=c\) \(\frac{dy}{dx}=3^{y-x}\) $⇒\int 3^{-y}dy=\int 3^{-x}dx$ $⇒-\frac{3^{-y}}{\log_e3}=-\frac{3^{-x}}{\log_e3}+C$ $⇒\frac{3^{-x}}{\log_e3}-\frac{3^{-y}}{\log_e3}=C$ [$\log 3 ×C$ = Constant] $⇒\frac{1}{3^{x}}-\frac{1}{3^{y}}=C$ |