If the volume of two right circular cones are in the ratio 4 : 1 and their diameter are in the ratio 5 : 4, then the ratio of their height is: |
18 : 19 34 : 74 64 : 25 26 : 35 |
64 : 25 |
Volume : 4 : 1 Radius: 5 : 4 (ratio of diameter = ratio of radius) Radius2 : 25 : 16 Ratio of height = \(\frac{Vol._1}{R^2}\) : \(\frac{Vol._2}{r^2}\) Height : \(\frac{4}{25}\) : \(\frac{1}{16}\) = 64 : 25 |