Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Mensuration: 3D

Question:

If the volume of two right circular cones are in the ratio 4 : 1 and their diameter are in the ratio 5 : 4, then the ratio of their height is:

Options:

18 : 19

34 : 74

64 : 25

26 : 35

Correct Answer:

64 : 25

Explanation:

Volume :       4    :    1

Radius:         5    :    4               (ratio of diameter = ratio of radius)

Radius2 :      25   :    16   

Ratio of height =  \(\frac{Vol._1}{R^2}\)  :  \(\frac{Vol._2}{r^2}\)

Height :      \(\frac{4}{25}\)  :  \(\frac{1}{16}\) = 64   :    25