Two massive particles of mass m1 and m2 are released from rest from a very large distance. Find the speeds of the particles, when their distance of separation is r. |
$m_1 \sqrt{\frac{G}{\left(m_1+m_2\right) r}}$ $m_1 \sqrt{\frac{2 G}{\left(m_1+m_2\right) r}}$ $m_1 \sqrt{\frac{G}{2\left(m_1+m_2\right) r}}$ $2 m_1 \sqrt{\frac{G}{\left(m_1+m_2\right) r}}$ |
$m_1 \sqrt{\frac{2 G}{\left(m_1+m_2\right) r}}$ |
Since the net force acting on the system is equal to, $F=\vec{F}_1 + \vec{F}_2=0$, the momentum of the system at this instant, is equal to its initial momentum, that is zero because the system is released from rest. $\Rightarrow\left|m_1 \vec{v}_1+m_2 \vec{v}_2\right|=0$ $\Rightarrow m_1 v_1=m_2 v_2$ (numerically) ......(1) Conservation of energy yields $E_1=E_2$ $K_1+U_1=K_2+U_2$ Since the system is released from rest, K1 = 0. Since the particles are released from very large distance, U1 = 0 $\Rightarrow K_2+U_2=0$ $\Rightarrow\left(\frac{1}{2} m_1 v_1^2+\frac{1}{2} m_2 v_2^2\right)+\left(-\frac{G m_1 m_2}{r}\right)=0$ .......(2) Eliminating $N_2$ from (2) by putting $v_2=\frac{m_1 v_1}{m_2}$ from (1), we obtain, $\frac{1}{2} m_1 v_1^2+\frac{1}{2} m_2\left(\frac{m_1 v_1}{m_2}\right)^2=\frac{G m_1 m_2}{r}$ $\Rightarrow \frac{m_1 v_1^2}{2}\left[1+\frac{m_1}{m_2}\right]=\frac{G m_1 m_2}{r}$ $\Rightarrow v_1=\sqrt{\frac{2 G m_2^2}{\left(m_1+m_2\right) r}}=m_2 \sqrt{\frac{2 G}{\left(m_1+m_2\right) r}}$ Similarly, $v_2=\frac{m_1 v_1}{m_2}=m_1 \sqrt{\frac{2 G}{\left(m_1+m_2\right) r}}$ |