CUET Preparation Today
CUET
-- Mathematics - Section B1
Relations and Functions
Find the range of the function f(x)=3\sin\left(\sqrt{\frac{π^2}{16}-x^2}\right). |
\left[3,\frac{5}{\sqrt{2}}\right] \left[0,-\frac{3}{\sqrt{2}}\right] \left[0,\frac{3}{\sqrt{2}}\right] \left[0,-\frac{5}{\sqrt{2}}\right] |
\left[0,\frac{3}{\sqrt{2}}\right] |
We must have \frac{π^2}{16}-x^2≥0 Also \frac{π^2}{16}-x^2≤\frac{π^2}{16} ⇒0≤\frac{π^2}{16}-x^2≤\frac{π^2}{16} ⇒0≤\sqrt{\frac{π^2}{16}-x^2}≤\frac{π}{4} ⇒0≤\sin\sqrt{\frac{π^2}{16}-x^2}≤\frac{1}{\sqrt{2}} ⇒0≤3\sin\sqrt{\frac{π^2}{16}-x^2}≤\frac{3}{\sqrt{2}} Hence, range is \left[0,\frac{3}{\sqrt{2}}\right] |