Find the range of the function $f(x)=3\sin\left(\sqrt{\frac{π^2}{16}-x^2}\right)$. |
$\left[3,\frac{5}{\sqrt{2}}\right]$ $\left[0,-\frac{3}{\sqrt{2}}\right]$ $\left[0,\frac{3}{\sqrt{2}}\right]$ $\left[0,-\frac{5}{\sqrt{2}}\right]$ |
$\left[0,\frac{3}{\sqrt{2}}\right]$ |
We must have $\frac{π^2}{16}-x^2≥0$ Also $\frac{π^2}{16}-x^2≤\frac{π^2}{16}$ $⇒0≤\frac{π^2}{16}-x^2≤\frac{π^2}{16}$ $⇒0≤\sqrt{\frac{π^2}{16}-x^2}≤\frac{π}{4}$ $⇒0≤\sin\sqrt{\frac{π^2}{16}-x^2}≤\frac{1}{\sqrt{2}}$ $⇒0≤3\sin\sqrt{\frac{π^2}{16}-x^2}≤\frac{3}{\sqrt{2}}$ Hence, range is $\left[0,\frac{3}{\sqrt{2}}\right]$ |