$\int\limits_{3π/8}^{π/8}\frac{\tan^{2025} x}{\tan^{2025} x + \cot^{2025} x}dx$ is equal to |
$\frac{\pi}{8}$ $-\frac{\pi}{8}$ $\frac{\pi}{4}$ $-\frac{\pi}{8}$ |
$-\frac{\pi}{8}$ |
The correct answer is Option (2) → $-\frac{\pi}{8}$ Given $I=\displaystyle\int_{3\pi/8}^{\pi/8}\frac{\tan^{2025}x}{\tan^{2025}x+\cot^{2025}x}\,dx$ Reverse limits: $I=-\displaystyle\int_{\pi/8}^{3\pi/8}\frac{\tan^{2025}x}{\tan^{2025}x+\cot^{2025}x}\,dx$ Let $n=2025$ (odd) and $f(x)=\frac{\tan^{n}x}{\tan^{n}x+\cot^{n}x}$. Using $\tan\!\big(\frac{\pi}{2}-x\big)=\cot x$ gives $f(x)+f\!\big(\frac{\pi}{2}-x\big)=1$ On $[\frac{\pi}{8},\frac{3\pi}{8}]$ the substitution $x\mapsto \frac{\pi}{2}-x$ maps the interval onto itself, hence $2\displaystyle\int_{\pi/8}^{3\pi/8}f(x)\,dx=\displaystyle\int_{\pi/8}^{3\pi/8}1\,dx=\frac{\pi}{4}$ Therefore $\displaystyle\int_{\pi/8}^{3\pi/8}f(x)\,dx=\frac{\pi}{8}$ and $I=-\frac{\pi}{8}$ |