What is $\frac{dy}{dx}$ for the following equations involving $x$ and $y$: $\sin ^2x+\cos^2y=\pi$ |
$\frac{\sin x}{\sin y}$ $\frac{\cos x}{\cos y}$ $\frac{\cos 2x}{\cos 2y}$ $\frac{-\sin 2x}{\sin 2y}$ |
$\frac{-\sin 2x}{\sin 2y}$ |
$\sin^2x+\sin^y=π$ differentiating wrt x $2\sin x\cos x+2\sin y\cos y\frac{dy}{dx}=0$ $⇒\frac{dy}{dx}=\frac{-\sin 2x}{\cos 2y}$ |