If the wave length of 1st line of Balmer series of hydrogen is 6561Å, the wavelength of the 2nd line of series will be: |
9860 Å 4419 Å 4860 Å 8857 Å |
4860 Å |
The correct answer is Option (3) → 4860 Å Using Rydberg's formula, $\frac{1}{λ}=R_H\left(\frac{1}{{n_f}^2}-\frac{1}{{n_i}^2}\right)$ $∴\frac{1}{λ_1}=R_H\left(\frac{1}{2^2}-\frac{1}{3^2}\right)$ $[n_f=2,n_i=3]$ $\frac{1}{λ_1}=R_H\left(\frac{9-4}{36}\right)=\frac{5R_H}{36}$ $λ_1=\frac{36}{5R_H}$ $\frac{1}{λ_2}=R_H\left(\frac{1}{2^2}-\frac{1}{4^2}\right)$ $[n_f=2,n_i=4]$ $\frac{1}{λ_2}=R_H\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{3R_H}{16}$ $λ_2=\frac{16}{3R_H}$ $\frac{λ_1}{λ_2}=\frac{36}{5R_H}×\frac{3R_H}{16}=\frac{27}{20}$ $⇒λ_2=\frac{20}{27}λ_1=\frac{20}{27}×6561Å$ $=4860Å$ |