A convex mirror has a focal length f. A real object is placed at a distance fin front of it from the pole, produces an image at |
infinity $f$ $f/2$ $2f$ |
$f/2$ |
$ \text { u = -f , F = +f }$ $ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} $ $ \frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{f} - \frac{1}{-f} = \frac{2}{f} $ $ v = \frac{f}{2} \text{ Behind the Mirror}$ |