In Young's double slits experiment, if the ratio of the width of the two slits is 25 : 1, what is the ratio of intensity at the maxima and minima in the interference pattern? |
5 : 1 4 : 9 25 : 1 9 : 4 |
9 : 4 |
The correct answer is Option (4) → 9 : 4 Amplitude, $A∝\sqrt{Width\,of\,slits}$ $⇒A_1∝\sqrt{5},A_2∝\sqrt{1}$ $⇒A_1:A_2=5:1$ Now, $A_{max}=A_1+A_2=5+1=6$ $A_{min}=A_1-A_2=5-1=4$ and, $\frac{I_{max}}{I_{min}}∝\frac{{A_{max}}^2}{{A_{min}}^2}$ [$I_{max}$ = Intensity of Maxima] [$I_{min}$ = Intensity of Minima] $\frac{I_{max}}{I_{min}}∝\frac{(6)^2}{(4)^2}=\frac{36}{16}$ $⇒\frac{I_{max}}{I_{min}}=\frac{9}{4}$ |