Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Linear Programming

Question:

The equation of curve whose slope is given by $\frac{dy}{dx}=x$ and which passes through $(1,\frac{5}{2})$ is :

Options:

$ y =x^2+\frac{5}{2}$

$y =\frac{x^2}{2}+2$

$ y =\frac{x^2}{3}+\frac{2}{3}$

$y=3x^2+5$

Correct Answer:

$y =\frac{x^2}{2}+2$

Explanation:

The correct answer is option (2) → $y =\frac{x^2}{2}+2$

$\frac{dy}{dx}=x⇒∫dy=∫xdx$

so $y=\frac{x^2}{2}+C$ putting $(x, y) = (1, 5/2)$ to get C

$⇒\frac{5}{2}=\frac{1}{2}+C$

$⇒C=2$

$⇒y=\frac{x^2}{2}+2$