Two common tangents AC and BD touch two equal circles equal of radius 7 cm, at points A, C, B and D, respectively, as shown in the figure . If the length of BD is 48 cm, what is the length of AC ? |
40 cm 30 cm 50 cm 48 cm |
50 cm |
AC = Length of the direct common tangents BD = Length of direct transverse tangents Let, the distance between two circles = x cm So, BD = √(\( { x}^{2 } \) - \( { 7\; +\; 7}^{2 } \)) ⇒ 48 = √(\( { x}^{2 } \) - \( { 14}^{2 } \)) Squaring both sides ⇒ \( { 48}^{2 } \) = \( { x}^{2 } \) - 196 ⇒ 2304 = \( { x}^{2 } \) - 196 ⇒ \( { x}^{2 } \) = 2304 + 196 = 2500 ⇒ x = \(\sqrt {2500 }\) = 50 cm ALso AC = √(\( { 50}^{2 } \) - \( { 7\; -\; 7}^{2 } \)) ⇒ AC = \(\sqrt {2500 }\) = 50 cm Therefore, the length of BD is 48 cm and AC is 50 cm. |