The area of the region {$(x, y): x^2 +y^2≤1≤x+y$ } is : |
$\left(\frac{\pi}{4}-\frac{1}{2}\right)$ $\left(\frac{\pi}{4}+\frac{1}{2}\right)$ $\left(\frac{\pi}{2}-\frac{1}{2}\right)$ $\left(\frac{\pi}{2}+\frac{1}{2}\right)$ |
$\left(\frac{\pi}{4}-\frac{1}{2}\right)$ |
The correct answer is option (1) → $\left(\frac{\pi}{4}-\frac{1}{2}\right)$ required area = area of quarter circle - area of triangle $=\frac{\pi}{4}-\frac{1}{2}$ |