If AX = B where A, X and B are matrices and $A^{-1}, B^{-1}$ exist, then matrix X is |
$X=B^{-1} A$ $X=A^{-1} B$ $X=\frac{B}{A}$ $X=A B^{-1}$ |
$X=A^{-1} B$ |
The correct answer is Option (2) - $X=A^{-1} B$ $AX = B$ permultiplying with $A^{-1}$ $A^{-1}AX=A^{-1}B$ $IX=A^{-1}B$ $X=A^{-1}B$ |