The values of 'a' and 'b' such that the function defined by is a continuous function: $ |
$a=2, b=1$ $a=\frac{3}{2}, b=\frac{-9}{2}$ $a=\frac{3}{2}, b=\frac{9}{2}$ $a=\frac{-3}{2}, b=\frac{9}{2}$ |
$a=\frac{3}{2}, b=\frac{-9}{2}$ |
The correct answer is Option (2) → $a=\frac{3}{2}, b=\frac{-9}{2}$ $f(5)=3$ $\lim\limits_{x→5^+}ax+b=5a+b=3$ ...(1) $f(15)=18$ $\lim\limits_{x→15^-}ax+b=15a+b=18$ ...(2) eq. (2) - eq. (1) $⇒10a=15$ $a=\frac{3}{2}$ from (1) $5×\frac{3}{2}+b=3$ $b=\frac{-9}{2}$ |