The maximum value of $Z=3x+4y $ subjected to the constraints $3x+7y ≤21, 5x+2y ≤10; x, y ≥ 0$ is : |
$\frac{275}{29}$ $\frac{237}{19}$ $\frac{107}{29}$ $\frac{384}{29}$ |
$\frac{384}{29}$ |
The correct answer is Option (4) → $\frac{384}{29}$ $3x+7y=21$ ...(1) $5x+2y=10$ ...(2) -2 × Eq. (1) + 7 × Eq. (2), we get $35x+14y-6x-14y=70-42$ $29x=28$ $x=\frac{28}{29}$ Putting this value in eq. (1), $3(\frac{28}{29})+7y=21$ $\frac{84}{29}+7y=21$ $⇒y=21-\frac{84}{29}=\frac{525}{29}$ $⇒y=\frac{525}{29×7}=\frac{75}{29}$ $Z=3x+2y$ $→(x,y)=\left(\frac{28}{29},\frac{75}{29}\right)$ $Z=3×\frac{28}{29}+4×\frac{75}{29}$ $=\frac{384}{29}$ |