If $C(x)=x^2+5x+36$ is the total cost function for producing x units. The outputs for which average cost increases are : |
[6, ∞) (6, ∞) (- ∞, -6) ∪ (6, ∞) (- ∞, ∞) |
(6, ∞) |
The correct answer is Option (2) → (6, ∞) The average cost (AC) is, $AC=\frac{C(x)}{x}=\frac{x^2+5x+36}{x}$ $=x+5+\frac{36}{x}$ $AC'(x)=1-\frac{36}{x^2}=0$ $⇒x=6$ ⇒ Average cost increases for $x>6$. |