Find the slope of the tangent or normal to given curve at the indicated points as instructed: x= cos t, y = sin t at t = pi/4 : normal |
x=-y x=y+5 x=y x=3y |
x=y |
$x= \cos t, y = \sin t$ $⇒\frac{dx}{dt}=-\sin t,⇒\frac{dy}{dt}=\cos t$ $⇒\frac{dy}{dx}=-\frac{\cos t}{\sin t}$ $⇒\frac{dy}{dx}=-\cot(t)$ $⇒\left.\frac{dy}{dx}\right]_{t=\frac{\pi}{4}}=-1$ ∴ Slope of the tangent, $⇒m=-\frac{1}{dy/dx}=+1$ ∴ equation of the line → $x=y$ |