Using simple average of relatives method, the price index for 2011, taking 2001 as base year, was found to be 127. If $∑p_0= 263,$ then x and y from the following data are :
|
$x=50, y = 27 $ $x=50, y = 50 $ $x=27, y = 50$ $x=27, y = 27$ |
$x=50, y = 27 $ |
The correct answer is Option (1) → $x=50, y = 27$ Price index = $\frac{1}{n}∑\left(\frac{P_1}{P_0}×100\right)$ The price index for 2011 is given as 127, $127=\frac{1}{6}∑\left(\frac{P_1}{P_0}×100\right)$ $762=∑\left(\frac{P_1}{P_0}×100\right)$ $⇒125+125+\frac{6100}{x}+110+\frac{100y}{18}+130=762$ $490+\frac{6100}{x}+\frac{100y}{18}=762$ $\frac{6100}{x}+\frac{100y×18}{18}=4896$ $\frac{6100}{x}+100y=4896$ $(x=50\,and\,y=27)$ satisfies. |