Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Applications of Derivatives

Question:

Which of the following functions are increasing on $x ∈(0,\frac{\pi}{2})$?

(A) $f(x) = \sin x$
(B) $f(x) = \cos x$
(C) $f(x) = \tan x$
(D) $f(x) = \cos 3x$

Choose the correct answer from the options given below:

Options:

(A) and (D) only

(A) and (C) only

(B) and (C) only

(C) and (D) only

Correct Answer:

(A) and (C) only

Explanation:

The correct answer is Option (2) → (A) and (C) only

(A) $f(x) = \sin x$
(C) $f(x) = \tan x$

Given interval: $x \in (0, \frac{\pi}{2})$

Check monotonicity using derivative:

(A) $f(x) = \sin x$

$f'(x) = \cos x > 0$ in $(0, \frac{\pi}{2})$

Increasing

(B) $f(x) = \cos x$

$f'(x) = -\sin x < 0$ in $(0, \frac{\pi}{2})$

Decreasing

(C) $f(x) = \tan x$

$f'(x) = \sec^2 x > 0$ in $(0, \frac{\pi}{2})$

Increasing

(D) $f(x) = \cos 3x$

$f'(x) = -3\sin 3x < 0$ in $(0, \frac{\pi}{2})$

Decreasing