Which of the following functions are increasing on $x ∈(0,\frac{\pi}{2})$? (A) $f(x) = \sin x$ Choose the correct answer from the options given below: |
(A) and (D) only (A) and (C) only (B) and (C) only (C) and (D) only |
(A) and (C) only |
The correct answer is Option (2) → (A) and (C) only (A) $f(x) = \sin x$ Given interval: $x \in (0, \frac{\pi}{2})$ Check monotonicity using derivative: (A) $f(x) = \sin x$ $f'(x) = \cos x > 0$ in $(0, \frac{\pi}{2})$ ⇒ Increasing (B) $f(x) = \cos x$ $f'(x) = -\sin x < 0$ in $(0, \frac{\pi}{2})$ ⇒ Decreasing (C) $f(x) = \tan x$ $f'(x) = \sec^2 x > 0$ in $(0, \frac{\pi}{2})$ ⇒ Increasing (D) $f(x) = \cos 3x$ $f'(x) = -3\sin 3x < 0$ in $(0, \frac{\pi}{2})$ ⇒ Decreasing |