The angle between the line $\vec{r}=(\hat{i}+2\hat{j}-\hat{k}) +\lambda (\hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r}.(2\hat{i}-\hat{j}+\hat{k})= 4$ is : |
$sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ $cos^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ $tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ $sin^{-1}\left(\frac{2\sqrt{2}}{5}\right)$ |
$sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ |
$\vec v$ → vector in direction of line $\vec n$ → normal vector of plane θ → angle between plane and line $\vec v= \hat i-\hat j+\hat k$ $\vec n=2\hat i-\hat j+\hat k$ $|\vec v|=\sqrt{3}, |\vec n|=\sqrt{6}$ so $\vec v.\vec n=|\vec v||\vec n|\cos(90-θ)$ so $\sin θ=\frac{\vec v.\vec n}{|\vec v||\vec n|}$ $=\frac{4}{\sqrt{3}×\sqrt{2}×\sqrt{3}}$ $=\frac{2\sqrt{2}}{3}⇒θ=\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ |