The shortest distance between lines $\frac{-x-3}{4}=\frac{y-6}{3}=\frac{z}{2}$ and $\frac{-x-2}{4}=\frac{y}{1}=\frac{z-7}{1}$ is: |
$\frac{1}{9}$ units 81 units 9 units 7 units |
9 units |
The correct answer is Option (3) → 9 units Given lines: \(\frac{-x - 3}{4} = \frac{y - 6}{3} = \frac{z}{2}\) \(\frac{-x - 2}{4} = \frac{y}{1} = \frac{z - 7}{1}\) Parametric form: Line 1: \[ \begin{cases} \frac{-x - 3}{4} = t \Rightarrow x = -4t - 3 \\ \frac{y - 6}{3} = t \Rightarrow y = 3t + 6 \\ \frac{z}{2} = t \Rightarrow z = 2t \end{cases} \] Line 2: \[ \begin{cases} \frac{-x - 2}{4} = s \Rightarrow x = -4s - 2 \\ \frac{y}{1} = s \Rightarrow y = s \\ \frac{z - 7}{1} = s \Rightarrow z = s + 7 \end{cases} \] Direction vectors: \(\vec{d_1} = (-4, 3, 2)\) \(\vec{d_2} = (-4, 1, 1)\) Points on lines at parameter 0: \(\vec{A} = (-3, 6, 0)\) \(\vec{B} = (-2, 0, 7)\) Vector between points: \(\vec{AB} = \vec{B} - \vec{A} = (1, -6, 7)\) Cross product: \[ \vec{d_1} \times \vec{d_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 3 & 2 \\ -4 & 1 & 1 \\ \end{vmatrix} = (1, -4, 8) \] Magnitude of cross product: \(|\vec{d_1} \times \vec{d_2}| = \sqrt{1^2 + (-4)^2 + 8^2} = 9\) Dot product: \(\vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) = 81\) Shortest distance: \[ \frac{|\vec{AB} \cdot (\vec{d_1} \times \vec{d_2})|}{|\vec{d_1} \times \vec{d_2}|} = \frac{81}{9} = 9 \] |