Match List I with List II
Choose the correct answer from the options given below : |
A-III, B-II, C-IV, D-I A-III, B-IV, C-I, D-II A-I, B-II, C-III, D-IV A-IV, B-I, C-II, D-III |
A-III, B-IV, C-I, D-II |
The correct answer is Option (2) → A-III, B-IV, C-I, D-II (A) $y=\sin 2x$ $y'=2\cos 2x=0$ $x=\frac{π}{4}$ so $\sin 2x$ increases from 0 → 1 in $(0,\frac{π}{4})$ (III) (B) $y=\tan x$ $y'=\sec^2x=0⇒x=\frac{π}{2}$ but $\sec^2x≥0$ always of $\tan x$ increasing in each quadrant (IV) (C) $y=\cos x$ $y'=-\sin x=0⇒x=0,π,2π,....$ $⇒\cos x$ is decreasing from 1 to 0 in $(0,\frac{π}{6})$ (I) (D) $y=\cos 3x$ = $\cos z$ decreasing in $z∈(0,\frac{π}{2})$ $⇒x∈(0,\frac{π}{6})$ (II) |