If $f(x)=\begin{vmatrix}0 & x-a& x-b\\x+a& 0 & x-c\\x+b & x+c& 0\end{vmatrix}$, then f(0) is : |
3abc -abc abc 0 |
0 |
The correct answer is Option (4) → 0 $f(x)=\begin{vmatrix}0 & x-a& x-b\\x+a& 0 & x-c\\x+b & x+c& 0\end{vmatrix}⇒f(0)=\begin{vmatrix}0 & -a& -b\\a& 0 & -c\\b & c& 0\end{vmatrix}$ as it is skew symmetric $A=-A^T$ so $|A|=-|A^T|$ so $|A|=0$ so $f(0)=0$ |