The power of a biconvex lens is 12 D and the radius of curvature of each surface is 10 cm. The refractive index of the material of the lens is |
1.6 1.5 1.45 1.875 |
1.6 |
The correct answer is Option (1) → 1.6 Given: Power of lens $P = 12 \, D$ Radius of curvature of each surface $R = 10 \, cm = 0.1 \, m$ Lensmaker's formula for thin lens: $\frac{1}{f} = (n - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$ For biconvex lens: $R_1 = R$, $R_2 = -R$ $\frac{1}{f} = (n - 1) \left( \frac{1}{0.1} - \frac{1}{-0.1} \right) = (n - 1) \left( \frac{1}{0.1} + \frac{1}{0.1} \right) = (n - 1) \cdot 20$ Power $P = \frac{100}{f(\text{cm})} = \frac{100}{f(\text{cm})} \Rightarrow f = \frac{100}{12} \approx 8.33 \, cm = 0.0833 \, m$ Alternatively, using SI units: $P = \frac{100}{f(\text{cm})} \Rightarrow f = \frac{100}{12} \approx 8.33 \, cm = 0.0833 \, m$ From lensmaker's formula: $\frac{1}{f} = 20 (n - 1)$ $\frac{1}{0.0833} = 20 (n - 1)$ $12 = 20 (n - 1)$ $n - 1 = \frac{12}{20} = 0.6$ $n = 1.6$ Answer: Refractive index $n = 1.6$ |