Two parallel long wires carry currents, $i_1$ and $i_2$ with $i_1>i_2$. When the currents are in same direction, the magnetic field at a point midway between them is 10 μT. If the direction of $i_2$ is reversed, the field becomes 30 μT. The ratio of $i_1/i_2$ is: |
4 : 1 3 : 1 2 : 1 1 : 2 |
2 : 1 |
The correct answer is Option (3) → 2 : 1 The magnetic field $(\vec B)$ at a point at distance (r) from a long straight wire - $B=\frac{μ_0i}{2πr}$ $B_{same}=B_1+B_2=\frac{μ_0i_1}{2πr}+\frac{μ_0i_2}{2πr}$ $⇒10×10^{-6}=\frac{μ_0}{2πr}(i_1+i_2)$ $B_{opposite}=B_1-B_2=\frac{μ_0}{2πr}(i_1-i_2)$ $⇒30×10^{-6}=\frac{μ_0}{2πr}(i_1-i_2)$ $∴\frac{30×10^{-6}}{10×10^{-6}}=\frac{K(i_1-i_2)}{K(i_1+i_2)}$ $⇒3(i_1+i_2)=i_1-i_2$ $⇒\frac{i_1}{i_2}=2$ |