The price p per unit if an article is p = 75 - 2x and the cost function is given by $C(x)= 250 + 10x+\frac{x^2}{2}$ For, maximum profit, the number of units sold are : |
13 12 10 5 |
13 |
The correct answer is Option (1) → 13 Revenue is calculated as, $R(x)=x.p=x(75-2x)$ $=75x-2x^2$ Cost function, $C(x)=250+10x+\frac{x^2}{2}$ Profit, $P(x)=R(x)-C(x)$ $=75x-2x^2-250-10x-\frac{x^2}{2}$ $=-250+65x-\frac{5x^2}{2}$ To find critical points, $f'(c)=0$ $⇒65-5x=0$ $⇒x=\frac{65}{5}=13\,units$ |