Let P(2, -1, 4) and Q (4, 3, 2) are two points and a point R on PQ is such that 3 PQ = 5 QR, then the coordinates of R are |
$\left(\frac{14}{5}, \frac{3}{5}, \frac{16}{5}\right)$ $\left(\frac{16}{5}, \frac{7}{5}, \frac{14}{5}\right)$ $\left(\frac{11}{5}, \frac{1}{2}, \frac{13}{4}\right)$ none of these |
$\left(\frac{16}{5}, \frac{7}{5}, \frac{14}{5}\right)$ |
The correct answer is Option (2) → $\left(\frac{16}{5}, \frac{7}{5}, \frac{14}{5}\right)$ $\left(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n},\frac{mz_2+nz_1}{m+n}\right)$ Here, $m=3$ and $n=2$ $P=(2,-1,4);Q=(4,3,2)$ $∴x=\frac{3.4+2.2}{3+2}=\frac{16}{5}$ $y=\frac{3.3+2.(-1)}{3+2}=\frac{7}{5}$ $z=\frac{3.2+2.4}{3+2}=\frac{14}{5}$ |