The random variable X has a probability distribution \(P(X=x)=\begin{Bmatrix}5k, & x=2\\2k, & x=3\\3k, & x=1\\0, & otherwise\end{Bmatrix}\) Then, the value of E(X) is: |
0.8 0.4 1.9 0.5 |
1.9 |
The correct answer is option (3) → 1.9 Sum of probabilities must be equal to 1. $⇒5k+2k+3k+0=1$ $⇒k=\frac{1}{10}$ Now, $E(X)=∑x.P(X=x)$ $=\frac{5}{10}.2+\frac{2}{10}.3+\frac{3}{10}.1$ $=1+0.6+0.3$ $=1.9$ |