Two polaroid $P_1$ and $P_3$ are placed such that their pass-axis are mutually perpendicular. Another polaroid $P_2$ is rotated between $P_1$ and $P_3$. For what angle θ between $P_1$ and $P_2$ the intensity of light emerging from $P_3$ will be maximum? |
$\frac{π}{3}$ $\frac{π}{2}$ $\frac{π}{4}$ $\frac{π}{6}$ |
$\frac{π}{4}$ |
The correct answer is Option (3) → $\frac{π}{4}$ Intensity of light passing through a particular polarizer is - $I=I_0\cos^2θ$ (θ → Angle between the light's polarization direction and pass axis) Intensity after pass ($P_1$), $I_1=\frac{I_0}{2}$ Intensity after pass ($P_2$), $I_2=I_1\cos^2θ=\frac{I_0}{2}\cos^2θ$ Intensity after pass ($P_3$), $I_3=I_2\cos^2(90-θ)$ $=\frac{I_0}{2}\cos^2θ\sin^2θ$ $=\frac{I_0}{2}×\frac{1}{4}×\sin^2(2θ)$ $=\frac{I_0}{8}\sin^2(2θ)$ for, Maximum intensity, $\sin^2(2θ)=1$ $2θ=90$ $⇒θ=45°=\frac{π}{4}$ |